Supervised HT'M and Catastrophic Forgetting

Eric Laukien

October 31, 2014

Abstract

An investigation of how to combine hierarchical temporal memory
(HTM) with supervised learning on catastrophic forgetting tasks.

1 Introduction

In this paper I attempt to investigate the applicability of hierarchical tem-
poral memory (HTM) to supervised learning tasks. In doing so, I come up with
a new version of HT'M which differs from the original proposed by Numenta!'
in their cortical learning algorithm whitepaper in that it operates on continuous
states as opposed to discrete states. I call this version SDRRBFNetwork (sparse
distributed representation radial basis function network). Furthermore, I show
that on tasks where typical machine learning techniques suffer from catastrophic
forgetting, SDRRBFNetwork vastly outperforms the current state-of-the-art.

2 Catastrophic Forgetting
2.1 The Problem

Catastrophic forgetting, also known as catastrophic interference, is a prob-
lem in which a function approximator or classifier forgets previous information
in favor of new information that is similar®?l. This means that the algorithm
cannot effectively run in online situations, where information is presented incre-
mentally in small steps.

2.2 Proposed Solutions - Offline

In a offline situation the entirety of the information is available beforehand.
One can therefore select samples to learn from this information in such a way
that samples differ significantly (temporally distinct) and do not override pre-
viously learned associations. When done randomly, this is called stochastic
sampling.

2.3 Proposed Solutions - Online

In a online situation the training data is received by the function approxima-
tor in incremental pieces that are strongly correlated temporally. This means



that for small changes in input, generally there will also be small changes in
output.

Some suggest that catastrophic forgetting results from overlapping sets of
hidden nodes being active for different inputs. Therefore, it would make sense to
”sharpen” 3] the output of the most active hidden nodes and decrease strongly
the output of less active nodes. This way one can enforce a more or less constant
number of active hidden nodes.

Others suggest using unsupervised pre-training to deal with catastrophic
forgetting[4]. With this approach, the initial weights will have been pre-destined
to form a low-overlap hidden representation, thus leading to less catastrophic
forgetting.

3 My Algorithm: SDRRBFNetwork

3.1 Overview

I take an approach similar to the ”sharpening” approach. However, I argue
that one can improve upon sharpening by using something similar to radial basis
function networks (RBF). I employ an online unsupervised learning algorithm to
learn time-varying efficient non-overlapping representations of the input data. I
then apply a simple linear function approximation technique to translate these
hidden layer representations to have the system act as a nonlinear function
approximator.

3.2 Continuous HTM

The unsupervised portion of this algorithm is very similar to the spatial
pooler in HTM, but instead of using discrete states, it uses continuous states
for the entirety of the spatial pooler. I leave out the temporal pooler and
prediction in this paper. This can be the subject of a future work.

The unsupervised portion is refered to as continuous HTM in this paper. It
consists of a N dimensional grid of nodes, each with a (potentially convolutional)
set of connections to the input grid.

Each node also contains a prototype vector, called P, the size of that node’s
receptive field. These can also be viewed as weights. Each node has a activation
value A and a separate output value O. Furthermore, there is a width value W
for each node that describes how sensitive it is to different input values.

The first step is to calculate the activation values of the nodes,

A = o= WHlIP—z|?

where z is the input vector.

After all activations have been computed, the output of a node is computed
by comparing a node’s activation to all of the surrounding nodes. This is the
inhibitory step; nodes that are very active inhibit neighbors. Where I is the set
of all nodes in a particular node’s inhibition radius, the output of a node is

Cyx A—m,aim(f)
O=¢ max (1) = 1 *2 I



where C is some positive constant. The unsupervised training works as follows:
When an input is received and activation/output computation has concluded,
the nodes with the strongest outputs should move their prototype vectors to-
wards the input and modify their widths W to better approximate the variance
of the input.

Pt+1:Pt+Oé*O*(I'7Pt)

where « is a learning rate, and ¢ denotes the timestep.

Cs

Wes = Wt 020 (" pyp

—Wy)
where C5 is another positive constant, and 3 is another learning rate.

3.3 Supervised Portion

The supervised portion of the algorithm is simply a single-layer linear per-
ceptron with one input for each output of the continuous HTM unsupervised
learner. In addition, it has a single bias unit, whose output is always 1. The
supervised portion is updated with standard gradient descent. Due to the well-
known nature of this algorithm, I do not feel the need to go over it again here.

4 Experiments

4.1 Setup

Here, I will compare my algorithm, SDRRBFNetwork, to a multilayer per-
ceptron with and without hidden activation sharpening and stochastic sampling,
and a network with unsupervised pre-training (trained using constrastive diver-
gence followed by backpropagation). I will compare the results on a simple task:
Learning the sin(3x) function. Despite the simplicity of the function, I hope to
show the advantages of my algorithm over the others for online learning tasks.

4.2 Procedure

For trials in which no stochastic sampling was used (online scenario), I iterate
over the sin(3z) curve by incrementing x by 0.01 for every time step, all the
way up tp 27. In the stochastic sampling case, x is chosen randomly from the
[0, 27) range.

For the multilayer perceptron, I used 16 hidden units, with a learning rate
of 0.001. In the sharpening multilayer perceptron, I set the activation sharpness
factor to 0.75 and the number of sharpened nodes to 3.

The unsupervised pre-training version still uses 16 hidden units (one hid-
den layer). It is trained with contrastive divergence for 10000 iterations with
a learning rate of 0.01 before backpropagation is used for fine-tuning with a
learning rate of 0.001.

The SDRRBFNetwork uses 16 * 16 nodes, a C; value of 32, a Cy value of 2,
and a learning rate a of 0.01 and a learning rate 5 of 0.01.



The number of passes over the sin(3z) function will be indicated per exper-
iment. Stochastic sampling versions will receive the same number of samples as
the incremental (online) ones.

All of the algorithms used in this paper have been tested on other problems,
to assure that the implementation is indeed correct. Also, note that the learning
rate has been lowered on the multilayer perceptrons, since I found that with
higher learning rates such as the one used by SDRRBFNetwork the multilayer
perceptrons tends to diverge.

4.3 Results

I plotted the performance of the experiments. See the end of the paper for
figures labeled with the number of training iterations. Yellow is the sin(3x)
function. Light blue indicates the SDRRBFNetwork. Red indicates the multi-
layer perceptron without sharpening, green indicates the multilayer perceptron
with sharpening, magenta is the unsupervised pre-trained network, and dark
yellow is the multilayer perceptron with stochastic sampling (no sharpening).

5 Discussion

From these results, one can see that even at the lowest number of iterations
(16), the SDRRBFNetwork gets a decent albeit noisy approximation of the
curve. The multilayer perceptron without sharpening never gets a decent ap-
proximation. The multilayer perceptron with sharpening is able to approximate
the first wave after 256 iterations. The pre-trained network doesn’t seem to do
anything of value, despite having its implementation verified on other tasks.
Finally, the stochastic sampling network gets the first wave after 64 iterations
and the second as well in 128 iterations.

Only the SDRRBFNetwork achieved satisfactory results. The results are not
as smooth as they others due to the way the spatial pooler sharpens activations,
but overall the error is far lower.

The SDRRBFNetwork uses a lot more nodes than the other techniques in
these experiments. I increased the count from the original 8 * 8 to 16 * 16 since
I found that more nodes helped accuracy (a property not necessarily shared by
the other algorithms in my tests).

Even when stochastic sampling is used, the results are not as good as with the
SDRRBFNetwork with so few iterations. Standard feedforward neural networks
seem to require vastly more iterations in general in order to be effective, but
the resulting approximations are smoother.

SDRRBFNetwork would seem to lend itself well to reinforcement learning
due to its online nature. It does not require a large memory bank to draw
stochastic samples from (experience replay), and it does not need pre-training.

6 Conclusion

I have demonstrated that in online learning scenarios and when little data
is available, SDRRBFNetwork vastly outpeforms multilayer perceptron-based
techniques. I have tested sharpening, unsupervised pre-training, and stochastic
sampling, all of which cannot perform as well as the SDRRBFNetwork on few



iterations. I have yet to test the generalization capabilities of the SDRRBFNet-
work, but this is the subject of another work.

7 References

[1] Hawkins, J. & Ahmad, S. & Dubinsky, D. et.al (2011) Hierarchical Tem-
poral Memory.

[2] McCloskey, M. & Cohen, N. (1989) Catastrophic interference in connec-
tionist networks: The sequential learning problem. In G. H. Bower (ed.) The
Psychology of Learning and Motivation,24, 109-164

[3] French, R. M. (1991). Using Semi-Distributed Representations to Over-
come Catastrophic Forgetting in Connectioniost Networks. In: Proceedings
of the 13th Annual Cognitive Science Society Conference (pp. 173-178) New
Jersey: Lawrence Erlbaum.

[4] McRae, K., & Hetherington, P. (1993). Catastrophic Interference is Elim-
inated in Pre-Trained Networks. In: Proceedings of the 15th Annual Conference
of the Cognitive Science Society (pp. 723-728). Hillsdale, NJ: Lawrence Erl-
baum



1.5

03 Actual
SDREBFNetwork
' W MLP
1o - o B MLPSharp
Il Pre-Train
Il Stochastic
-13
0.0 10 20 30 40 50 6.0
Figure 1: Comparison of techniques, 16 iterations.
15

Actual

! SDERBFNetwork
f I MLP

10 - o B MLPSharp

Il Pre-Train

| Stochastic

0.0 1.0 20 30 40

L

0 6.0

Figure 2: Comparison of techniques, 32 iterations.



—
L

1.0

2
L

25 \SVii 7 —
' , SDREBFNetworl
/ \ J W MLP
1.0 - o B MLPSharp
Il Pre-Train
Ml Stochastic
-15
00 10 20 30 10 50 60
Figure 3: Comparison of techniques, 64 iterations.
25

0.0 »
Actoal
05 b SDRRBFNetwork o
B MLP
o / B MLPSharp
Il Pre-Train
Il Stochastic
-1.5
0.0 10 20 30 40 30 6.0

Figure 4: Comparison of techniques, 128 iterations.



e
.

20
15
1.0
03
00
03 Actual
SDRRBFNetwork
Lo W MLP
| MLPSharp
13 Il Pre-Train
Il Stochastic
20
0.0 1.0 20 3.0 4.0 5.0 6.0

Figure 5: Comparison of techniques, 256 iterations.



